
Abstract. The rational function optimization algorithm
is one of the widely used methods to search stationary
points on surfaces. However, one of the drawbacks of
this method is the step reduction procedure to deal with
the overstepping problem. We present and comment on
a method such that the step obtained from the solution
of the rational function equations possesses the desired
correct length. The analysis and discussion of the
method is mainly centered on the location and optimi-
zation of transition states.

Key words: Rational function optimization method ±
Molecular geometry optimization ± Transition state
geometry optimization ± Restricted step algorithm ±
Augmented Hessian algorithm

1 Introduction

In theoretical chemical physics it is important to ®nd
stationary points (minima and ®rst-order saddle points)
on potential energy surfaces because they correspond to
equilibrium and transition state structures. Many algo-
rithms exist regarding the search for extrema on
multidimensional potential energy surfaces (see e.g. [1]
and references therein). One of the most powerful and
e�cient algorithms is that proposed by Banerjee et al.
[2], the so-called rational function optimization (RFO).
Basically, the algorithm consists in approximating the
quadratic variation of the energy in the neighborhood of
a point q

Q�Dq� � gTDq� 1
2DqTHDq �1�

by a [2/2] PadeÂ approximant
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where the step vector Dq gives the correction of the
molecular geometry, g is the gradient vector, and H the
Hessian matrix of the energy at q. The symmetric S
matrix has to be speci®ed but normally is taken as the
unit matrix I. The matrix that appears in the numerator
of Eq. (2) is the so-called augmented Hessian (AH). As
pointed out by Jensen [3], when the RFO method is
applied to locate transition states, very often the step
length is so large that the correction gives a geometry
outside the region where the second-order expansion is
valid. This region, the so-called ``trust region'', is
characterized by a ball radius R, the ``trust radius''.
Using the RFO algorithm, if �DqTDq�1=2 > R, one scales
the vector Dq by a factor. However, in this situation Dq
does not possesses the correct direction [3±5]. On the
other hand, it has been demonstrated that an inappro-
priate determination of the optimal direction of the Dq
vector within the ``trust region'' may produce an increase
of the number of iterations or a divergence in the
optimization process [6].

Obtaining vector Dq using the RFO with the appro-
priate step length had been considered by Banerjee et al.
[2]. These authors make a dynamic step reduction by
performing a one-dimensional line search along q� aDq,
where a � b�DqTDq�ÿ1=2. The b parameter is chosen in
such a way that the new step length, aDq, falls in the
``trust region''. However, the resulting scaled step vector
does not satisfy the optimal solution of Eq. (2). An al-
ternative method was given by Jensen and Jùrgensen [5],
consisting in taking S � I and replacing the numerator
in Eq. (2) by the following parametric form:

1 DqT
ÿ � 0 agT

ag H

� �
1

Dq

� �
�3�

where the parameter a is determined using the equation
�DqTDq�1=2 � R. Note that, in this case, Dq is a function
of a, e.g. Dq�a�. As pointed out by Khait et al. [7], the
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disadvantage of this approach is the lack of analytic
dependence of Dq�a� with respect to the a parameter.
However, Jensen and Jùrgensen [5] determined a value
for a for which �Dq�a�TDq�a��1=2 � R, within 10%. On
the other hand, Khait et al. [7] suggest another technique
which is quite close to that proposed by Banerjee et al.
[2]. In this technique the step length is obtained by
minimizing the absolute value of the scalar product
between the gradient g�a� and the line q� aDq, g�a� is
the gradient calculated at the point q� aDq. Finally,
Anglada and Bo®ll [8] proposed a RFO method where
the AH matrix is shifted in such a way that by solving
Eq. (2) one already obtains a step vector Dq that satis®es
the condition �DqTDq�1=2 � R. This method can be seen
as an interplay between the RFO and the (QA/TRIM)
[9a, 9b] or restricted quasi-Newton-Raphson (RQNR)
[9c] algorithms.

Considering the previous revision and with the aim
that the RFO solution falls into the ``trust region'', we
propose in this article a RFO method such that its
optimal solution also satis®es exactly the condition
�DqTDq�1=2 � R. We study also the connection between
the proposed RFO method and the QA/TRIM and
RQNR techniques [9]. The new RFO technique will be
applied in the location and optimization geometries of
both minima and transition structures, but the discus-
sion is mainly focused on transition states.

2 Theoretical background

2.1 Summary of the RFO algorithm

We are interested in locating stationary points (minima,
maxima, saddle points of any order) of a continuous and
di�erentiable function E�q� depending on n uncon-
strained variables qT � �q1; . . . ; qn�. In the RFO method
the new point q is simply taken as q� Dq, where the step
vector Dq extremalizes q�Dq�, given by Eq. (2), that is
rq�Dq� � 0. The latter condition yields as eigenvalue
equation of dimension �n� 1� [2, 10]:
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where vn;i is the projection of the eigenvector vi on the
coordinate subspace Rn and v1;i is the projection of vi on
the orthogonal complement to this subspace in Rn�1
space [7]. Finally, ki is the corresponding eigenvalue. In
this way, at any iteration, say k, the RFO method can be
written as:

1. Given gk, Hk and Sk, solve the corresponding
eigenvalue Eq. (4).

2. Select an eigenpair of the set fkk
i ; v

k
i gn�1

i�1 .
3. If vk

1;i di�ers from zero, then the vector �1DqTk � is
obtained in the following way

1
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and set qk�1 � qk � Dqk.

4. Estimate the quadratic change of the energy due to the
displacement Dqk
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In the last equation, the normalization condition
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has been employed. In step 1, one normally takes Sk � I
for each iteration. Step 2 needs some comments. At any
iteration, if one is interested in locating a minimum, the
eigenpair to be selected is i � 1. If we want to locate a
maximum, i � n� 1, while for a saddle point of order p,
i � p � 1 [2, 7, 8, 10]. We are mainly interested in saddle
points of order p � 1 which are associated with true
transition states; in this case, i � 2. Finally, regarding
Eq. (5), we see that the displacement vector Dqk is a
function of the selected eigenvector.

2.2 Analysis of the RFO method
and selection of the S matrix

This analysis is based on the results of Banerjee et al. [2].
Multiplying Eq. (4) by the inverse of v1;i and taking into
account Eq. (5) after arrangement we get

gTDq � ki �8a�
g� �Hÿ kiS�Dq � 0 �8b�
Expressions (8) are the partitioned equations of the RFO
method [2]. One can see Eq. (8b) as a shifted Newton-
Raphson formula. Using Eq. (8b) one computes Dq;
using Eq. (8a) one evaluates the shift ki. In other words,
the RFO method is a Newton-Raphson method with a
level shift where the calculation of the shift parameter is
well de®ned [10]. However, there still exists an undeter-
mination on the selection of the S matrix. This matrix
can be seen as a correction of the Hessian matrix H in
the region where the quadratic approximation,
Q�Dq�,given by Eq. (1), fails. The question now is how
to select the S matrix. With the aim of improving the
Newton-Raphson method, Fletcher [6] introduced the
restricted step technique, whereby the step Dq is
restricted within the region where Q�Dq� agrees with
the E�q� Dq� ÿ E�q� function. This region is the trust
region characterized by a trust radius, R. In a normal
Newton-Raphson method the application of the restrict-
ed step technique results in a formula which is similar to
Eq. (8b), but taking S � I and the ki parameter as a
Lagrange multiplier, this ensures [6]

DqTDq � R2 �8c�
and, consequently, is evaluated in a very di�erent way
rather than using Eq. (8a). In the RFO method the
parameter ki does not ensure that Dq falls into the trust
region because it is computed through Eq. (8a). The only
way that the RFO step solution, Dq, falls into the trust
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region is by an adequate selection of the S matrix such
that satis®es eq. (8c). However, the matrix S possesses
n�n� 1�=2 unknowns because it is symmetric, so we
have more unknown parameters that equations. This
problem can be solved by taking

S � aI �8d�
in the representation in which the Hessian matrix H is
diagonal and a > 0. The set of Eqs. (8) are the basis of
the restricted step RFO (RS-RFO) algorithm.

The analysis of the RS-RFO method will be carried
out in the representation of the set of eigenvectors of the
Hessian matrix H, fwjgn

j�1. In this basis Dq is

Dq � ÿ
Xn

i�1

�wi�Tg
hi ÿ ka

wi � ÿ
Xn

i�1

�wi�Tg
hi ÿ m

wi �9�

where m � ka. Consequently DqTDq is

DqTDq �
Xn

i�1

wi� �Tg
hi ÿ m

 !2

�10�

where fhjgn
j�1 are the set of eigenvalues of the H matrix.

Using the same representation, Eqs. (8a) and (8b) can be
rearranged as

k � ÿ
Xn

i�1

�wi�Tg
� �2

hi ÿ m
� F �m� � m

a
�11�

Note that for a � 1 it follows that m � k. The parametric
representation with respect to m of Eqs. (10) and (11) is
given in Fig. 1. The axes F �m� and m go from ÿ1 to �1
and the axis DqTDq goes form 0 to �1. The function
DqTDq has asymptotes at the eigenvalues of the Hessian
matrix H. In any minimization process, which corre-
sponds to select the lowest eigenpair of eigenvalue Eq.
(4), the function DqTDq goes from 0 to �1 as m goes
from ÿ1 to h1. This means that there exists a m and
consequently a k and a such that Eq. (8c) is satis®ed. In
Fig. 1, m11 is the solution of the RS-RFO equations for a
minimization because for this m value the function
DqTDq intersects with the straight line DqTDq � R2.
Note that this m11 value is obtained by a a � a1. In
searching a transition state, the RFO method converges
if m is taken to be within the interval h1 < m < h2.
However, there is no guaranty that the function DqTDq
in this interval possesses a common point with the
straight line DqTDq � R2. In Fig. 1, no value of m such
that h1 < m < h2 can satisfy DqTDq � R2, since in this
interval no point of the function DqTDq intersects with
this straight line. These results show an important
limitation of the RS-RFO method to locate transition
states. These drawbacks have been pointed out many
times [2, 5].

From the last discussion, one can see that for a given
vector g and matrix H, the RS-RFO equations depend
uniquely on the independent parameter a. For a value a,
through Eq. (4) we obtain one and only one set of n� 1
eigenpairs; selecting one eigenvector from this set and
using Eq. (5) gives a displacement vector Dq that may or

Fig. 1. Schematic plots of
DqTDq and F �m� with respect to
m given by Eqs. (10) and (11),
respectively. Both plots are
coupled in order to see the
behavior of the restricted-step
RFO method. The set h1; h2; . . .
is the set of eigenvalues of the
Hessian matrix H. The sets,
m01; m

0
2; . . . and m11; m

1
1; . . . are the

shift parameters of the Hessian
matrix. Each set of the shift
parameter is associated with a
di�erent a value. Note that
mj

i � kiaj, where the set
k1; k2; . . . are the eigenvalues of
the augmented Hessian matrix
for a given a. The parameter R
is the trust radius. In the normal
RFO method, we take the shift
parameter m1 for minima
searches and m2 for the location
of transition states
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may not satisfy Eq. (8c). Owing to this fact, it is im-
portant to see the analytical dependency of DqTDq with
respect to the parameter a in order to write an e�cient
RS-RFO algorithm. First we di�erentiate DqTDq with
respect to the paramete a, that is

d DqTDq
ÿ �

da
� 2

d�ka�
da

Xn

i�1

�wi�Tg
� �2
�hi ÿ ka�3 �12�

where Eq. (10) has been used. Now we need the
derivative of k with respect to a. Di�erentiating with
respect to a the ®rst two terms of Eq. (11) we get

dk
da
� ÿ d�ka�

da

Xn

i�1

�wi�Tg
� �2
�hi ÿ ka�2

� ÿ d�ka�
da

DqTDq

� ÿDqTDq
dk
da

a� k

� �
�13�

where Eq. (10) has been used and the fact that m � ka.
From the last equation we obtain

dk
da
� ÿ DqTDq
�1� DqTDqa� k �14�

Now we can evaluate d�ka�=da:

d�ka�
da
� dk

da
a� k � k

�1� DqTDqa� �15�

where Eq. (14) has been used. Substituting Eq. (15) into
Eq. (12) we get

d�DqTDq�
da

� 2
k

�1� DqTDqa�
Xn

i�1

�wi�Tg
� �2
�hi ÿ ka�3 �16�

Equation (16) is the main equation in order to write an
algorithm based on the RS-RFO equations and it gives
the analytical dependency of DqTDq with respect to the a
parameter.

2.3 The restricted step partitioned RFO method
to locate saddle points

As pointed out before, the RFO method presents some
di�culties to locate saddle points. Owing to this fact,
Banerjee et al. [2] proposed a slight modi®cation of the
method. Based on the idea of Bell et al. [11], they
partitioned the quadratic approximation model given in
Eq. (1) using the conjugate directions, speci®cally the
eigenvectors of the Hessian matrix. In this way, one has
two quadratic approximations. One is the quadratic
approximation de®ned using the eigenvectors set of the
H matrix along the directions the energy is maximized,
and the other taking the set of the eigenvectors of the H
matrix along the directions the energy is minimized. If
one applies independently the RFO method to each one
of these two quadratic approximations, one has the so-
called partitioned RFO (P-RFO) method [2]. Using this

method, one has two eigenvalues and two displacement
vectors, one associated with the maximization subspace
and the other associated with the minimization sub-
space. Note that the eigenvalue of the maximization
subspace is the highest eigenvalue of the RFO eigenvalue
equation of this subspace.

Let us analyze the restricted step method applied to
the P-RFO algorithm to locate a saddle point of order p
(RS-P-RFO). In this case, Eq. (10) takes the following
form:

DqTDq � �DqTDq�max � �DqTDq�min

�
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 !2

�
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 !2

�
Xp

i�1

�wi�Tg
hi ÿ kmaxa

 !2

�
Xn

i�p�1

�wi�Tg
hi ÿ kmina

 !2

�17�

where the subindexes max and min denote the maximi-
zation and minimization subspaces, respectively. As the
parameter a increases (decreases), mmax increases (de-
creases) and consequently �DqTDq�max decreases (in-
creases). In the same way, as a increases (decreases), mmin

decreases (increases) and, consequently, �DqTDq�min
decreases (increases). This fact can be observed by
analyzing Eq. (16) for this situation:

d�DqTDq�
da
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da
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� 2
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Xp
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� 2
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Xn

i�p�1
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� 2
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�1� �DqTDq�maxa�a
Xp

i�1

�wi�Tg
� �2
�hi ÿ mmax�3

� 2
mmin

�1� �DqTDq�mina�a
Xn

i�p�1

�wi�Tg
� �2
�hi ÿ mmin�3

�18�
where d�DqTDq�max=da � 0 since mmax > hp and hp is the
highest eigenvalue of the max subspace and mmax > 0. On
the other hand, d�DqTDq�min=da � 0 since mmin < hp�1
and hp�1 is the lowest eigenvalue of the min subspace
and mmin < 0. From the above analysis we conclude that
the overall DqTDq goes from �1 to 0 as a changes from
0 to �1. This means that there exists a kmax and kmin for
a given a such that Eqs. (8) will be satis®ed for the
partitioned RFO, which is the basis of the RS-P-RFO
method.

Finally, we say that the RS-P-RFO algorithm forces a
decoupling between the variables of the max and min
subspaces. The importance of this decoupling in the
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optimization process and the reformulation of a RS-
RFO algorithm to locate transition states will be ana-
lyzed below.

3 Computational implementation, examples,
and discussion

3.1 Details of the algorithm

In this subsection we give the organization of the steps
involved in the iterative procedure of the proposed RS-
RFO/RS-P-RFO algorithm. The description of the
algorithm is mainly focused to locate saddle points.
However, its extension to minima and maxima is trivial.

3.1.1 Initialization

Given q0, a trust radius R0, calculate E0 � E�q0�, the
gradient g0, and the Hessian matrix H0. Set k � 0.

3.1.2 Analysis of the Hessian

Compute the eigenpairs of the Hessian matrix
Hk; fhk

i ;w
k
i gn

i�1, project the gradient vector on the
eigenvector basis, f�wk

i �Tgk � f k
i gn

i�1. Select the transi-
tion vector, that is, the eigenvector along which the
energy is maximized: wk

tv; tv 2 �l; n�. Except in the ®rst
iteration, the selection of the transition vector is done
following the idea of Simons et al. [4].

3.1.3 Solution of the RS-P-RFO equations

This step involves a micro-iterative process.

1. Select a0 � 1, set l � 0.
2. As for the normal P-RFO algorithm [2], build and

solve the next two eigenvalue equations:

0 f k
tv

f k
tv hk

tv

 !
maxvk

1

maxvk
2

 !
� kk

max

1 0

0 al

� �
maxvk

1

maxvk
2

 !
�19a�

0 �f k
nÿ1�T

f k
nÿ1 Hk

D

 !
minvk

1

minv
k
nÿ1

 !
� kk

min

1 0

0 al

� �
minvk

1

minv
k
nÿ1

 !
�19b�

where f k
nÿ1 is the vector f k without the element f k

tv and
the matrix H k

D is a diagonal matrix formed by the
eigenvalues of the matrix Hk except hk

tv.

3. From Eq. (19a), take the eigenpair �kk
max;maxv

k� of
highest eigenvalue, and from Eq. (19b) take the
eigenpair �kk

min;minv
k� of the lowest eigenvalue. Using

these two eigenvectors and Eq. (5), compute Dqk
tv and

Dqk
nÿ1, where Dqk

nÿ1 is the displacement vector Dqk

without the element Dqk
tv.

4. If l � 0 and �DqTk Dqk�1=2 > Rk or l 6� 0 and
j�DqTk Dqk�1=2 ÿ Rkj > e1 and jalÿ1 ÿ alj > e2, then
compute the new al�1 using the expression

al�1 � al �
2 Rk�DqTk Dqk�1=2 ÿ DqTk Dqk

� �
d DqTk Dqk

ÿ �
da

� �
a�al

�20�

where the derivative d�DqTk Dqk�=da is evaluated accord-
ing to Eq. (18); set l � l� 1 and go to step 2; otherwise
end the micro-iterative process, since the vector Dqk
satis®es the RS-P-RFO equations.

3.1.4 Prediction of the energy variation

Using Eq. (6), estimate the quadratic change in energy:

Q Dqk� � � Q Dqk
tv

ÿ ��Q Dqk
nÿ1

ÿ �
� 1

2

kk
max

�maxvk
1�2
� kk

min

�minvk
1�2

" #
�21�

3.1.5 Evaluation of the trust region

Compute the energy at the point qk�1 � qk � Dqk;Ek�1
� E�qk�1�, and the coe�cient r � �Ek�1 ÿ Ek�=Q�Dqk�.
If r < rel or r > reu, set Rk�1 � �DqTk Dqk�1=2=Sf. If

ril � r � riu and j�DqTk Dqk�1=2 ÿ Rkj � e1, set Rk�1 � Rk

�Sf�1=2.

3.1.6 Test on the displacement vector Dqk
and convergence criteria

If r > Ub or r < Lb, then compute a new Dqk at the
same point qk but using the new Rk�1 trust radius and set
qk�1 � qk;Ek�1 � Ek; k � k � 1, and go to Sect. 3.1.3,
otherwise check the convergence criteria:
�DqTk Dqk=n�1=2 � e3; �DgTk Dgk=n�1=2 � e4; j�Dqk�ij � e5;
j�Dgk�ij � e6; i � l; n. If they are satis®ed, then stop. The
point qk is a stationary point.

If the convergence criteria are not satis®ed, then
compute qk�1 � qk � Dqk, and the gradient vector at
this point, gk�1. Update the approximate Hessian ma-
trix, Hk�1, using the Murtagh-Sargent-Powell (MSP)
formula [9c, 12]. Set k � k � 1 and go to Sect. 3.1.2.

3.2 Algorithm comments

The above algorithm is quite close to that proposed for
the QA/TRIM and RQNR [9] methods. The parameters
re1; r

i
l; r

e
u and riu lie in the range Lb � rel < ril < riu < reu �

Ub, where rel � Lb� de; ril � Lb� di; reu � Ubÿ de;
riu � Ubÿ di with Ub � di > de � Lb and Ub > 1
> Lb. Suggested values of these parameters are:
Lb � 0;Ub � 2; de � 0:75, and di � 0:80. The parameter
Sf is a scaling factor with a suggested value of 2. The

initial trust radius is R0 � 0:03 AÊ /rad.
The diagonalization of the generalized eigenvalue

Eqs. (19) can be carried out using standard methods by
transforming them to the simplest eigenvalue equation:
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and by back transformation using the equation

minvk
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minv
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� 1 0
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minz k

1

minz
k
nÿ1

� �
�23�

Equation (20) used in step 4 of Sect. 3.1.3 needs some
comments. Since we are interested in the solution of the
nonlinear Eq. (8c), where DqTk Dqk is a function of a, this
is carried out using the Newton method to ®nd the zero
value of the function U�a� � 1ÿ �DqTk Dqk�1=2=Rk, which
in this case takes the following expression:

al�1 � al ÿ
U�a�a�al

dU�a�
da

� �
a�al

� al �
2 Rk DqTk Dqk

ÿ �1=2ÿDqTk Dqk

� �
d DqTk Dqk

ÿ �
da

� �
a�al

�24�

and justi®es Eq. (20). This procedure can be seen as an
extension of the Hebden technique [6, 13].

3.3 Numerical results and performance of the algorithm

The numerical analysis and behavior of the algorithm
presented above (RS-P-RFO) is carried out for the
location and optimization of the transition structures of
several reactions. These reactions were studied using the
appropriate wave function and the AM1 semiempirical
Hamiltonian [14] implemented in a modi®ed version of
the MOPAC program [15]. The convergence criteria are

e1 � 10ÿ4 AÊ /rad, e2 � 10ÿ5 ( ÊA)
ÿ2
=(rad)ÿ2, e3 � 6�10ÿ4

AÊ /rad, e4 � 4� 10ÿ2 kcal (mol AÊ )ÿ1/kcal (mol rad)ÿ1,
e5 � 10ÿ3 AÊ /rad, and e6 � 5� 10ÿ2 kcal (mol AÊ )ÿ1/kcal
(mol rad)ÿ1. The parameters e1 and e2 are the conver-
gence criteria used in the algorithm to solve the RS-P-
RFO equations. On the other hand, the parameters
e3; e4; e5, and e6 are the normal convergence criteria used
in any optimization algorithm. Speci®cally, e3 and e5 are
the convergence criteria on the norm and the biggest
component in the absolute value of the Dqk vector,
whereas e4 and e6 are the corresponding criteria for the
Dgk vector. The Z-matrix geometrical coordinates were
used during the process. However, according to the
proposed algorithm, the optimization of the quadratic
model is carried out using the coordinates in that the
Hessian matrix is diagonal. The initial Z-matrices were
taken from [16±19]. The results are shown in Table 1.
The behavior of the present algorithm is also compared
with a P-RFO method which di�ers from the proposed
RS-P-RFO technique in that the resulting displacement
vector, Dq, is scaled by some factor if DqTDq is larger

than the current trust radius. In general, RS-P-RFO
converges much better than the P-RFO method. Note
that in examples 12 and 16 in Table 1 the P-RFO
technique does not converge to the correct stationary
point but to a minimum. This never occurs when the RS-
P-RFO algorithm is used. In examples 8 and 9 the RS-P-
RFO technique does not converge within 100 iterations
and the same behavior is observed in example 9 using the
P- RFO algorithm. As we will see below, this is due to
the partition of the AH matrix. We conclude from these
numerical examples that, in general, it is much better to
take an algorithm such that the displacement vector, Dq,
corresponds to the optimum solution of the RFO
equations within the trust radius, rather than just scaling
it by some factor.

Finally, in Table 2 we show the performance of the
micro-iterative procedure described in Sect. 3.1.3 of the
proposed algorithm for some reactions presented in
Table 1. We observe that when the molecular geometry
is far from the optimum solution, if the trust radius is
quite big, say � 0:17 AÊ /rad, the number of micro-itera-
tions needed to converge is around 7. However, in the
same situation but with a small trust radius, say
� 0:05 AÊ /rad, the number of iterations needed to reach
the convergence of the micro-iterative process is around
13. Near to the converged molecular geometry, since the
length of the displacement vector, that is �DqTDq�1=2, is
much smaller that the current trust radius, the micro-
iterative process is o�. In some situations and normally
when the trust radius is small, the derivative dU�a�=da is
very small, so Eq. (24) cannot be used. In these cases we
use the secant method [20], which consists of substituting
in Eq. (24) the derivative by the quotient
�U�al� ÿ U�alÿ1��=�al ÿ alÿ1�. Looking at Fig. 1, it is
easy to understand why in these cases the derivative
dU�a�=da is small. For a small trust radius, the function
DqTDq with respect to m associated with the ®rst eigen-
pair intersects with the function DqTDq � R2 when it
presents an asymptotic behavior; this implies that the
function U�a� is almost constant in this region and,
consequently, dU�a�=da � 0.

4 The relation between RS-RFO and the QA/TRIM
and RQNR algorithms to locate saddle points;
a uni®ed treatment. The RS-I-RFO method

According to the previous discussion, using the RFO
methodology to locate a saddle point one needs to
partition the variables space into two subspaces. This
partition implies that during the quadratic optimization
the interaction between both subspaces is not taken into
account. The following question arises: is it possible to
reformulate the RS-RFO method in such a way that
without any type of partition one can ®nd transition
structures e�ciently? To answer this question we use the
concept of the image function of a quadratic potential
surface introduced by Smith [21], implemented using
restricted step algorithms [9], and analyzed by Sun and
Ruedenberg [22].

Let us take the quadratic function, Q�Dq�, given in
Eq. (1). We assume that the Hessian matrix H possesses
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one and only one negative eigenvalue, that is for htv < 0
and hi > 0 for i 6� tv; i � l; n: Following Sun and
Ruedenberg [22] we de®ne an image function of Q�Dq�,
denoted by Q��Dq�, by the equation

g� � Iÿ 2wtvw
T
tv

ÿ �
g �25�

Which is an elementary Householder orthogonal trans-
formation applied on the g vector. Di�erentiating
Eq. (25) with respect to the geometrical variables we get

H� � �Iÿ 2wtvw
T
tv�H � H�Iÿ 2wtvw

T
tv�

� h�tvwtvw
T
tv �

X
i�1

n

i6�tv

hiwiw
T
i �26�

where h�tv � ÿhtv. From Eq. (25) we see that f �tv � wT
tsg
�

� ÿwT
tsg � ÿftv and f �i � wT

i g
� � wT

i g � fi, for i 6� tv;
i � 1; n. It is easy to prove that the stationary point of
quadratic function Q�Dq� is the same point of the image

Table 1. Comparison of the number of steps required to optimize transition state geometries

Reaction Method

P-RFOa RS-P-RFOb RS-I-RFOc

1. CH3O! CH2OH [9c, 17] 14 18 19
2. Cyclopropyl radical ring opening [9c] 15 16 15
3. Bicyclo[2.2.1]butane ring opening, TS 1 [9c] 15 17 16
4. Bicyclo[2.2.1]butane ring opening, TS 2 [9c] 28 24 26
5. b-(formyloxy)ethyl radical ring opening [9c] 25 13 13
6. HCONHOH ® HCOHNHO [18] 12 10 10
7. Claisen rearrangement of

CH2@CHCH2OCH@CH2 [16, 18] 42 36 33
8. Retro-Diels-Alder reaction of cyclohexene [18] 24 Failsd 21
9. CH3O2H ® CH3 + O2H [17, 19] Failsd Failsd 37
10. Cyclopropylcarbene ® Cyclobutene [17, 19] 47 35 27
11. Tetrazine decomposition [18, 19] 31 32 34
12. CH3CH3 ® CH2CH2 + H2 [18] Failse 15 14
13. OCHNH3

+ ® NH4
++CO [18] 14 14 18

14. H2CNH ® HCNH2 [18] 22 20 23
15. HCN + H2 ® H2CNH [18] 25 22 22
16. HCNH2 ® HCN + H2 [18] Failse 56 53

All optimizations started at the Z-matrices given in the respective references; an exact Hessian matrix was calculated at the ®rst iteration
only
a The P-RFO solution is scaled according the current trust radius
b The P-RFO solution is optimized within the trust region; see text for more details
c The quadratic model optimized corresponds to the image function of the quadratic model of the objective function. The I-RFO solution is
optimized within the trust region; see text for more details
d The process did not converge within 100 iterations
e The process converged to a minimum

Table 2. Number of micro-
iterations needed for each
RS-P-RFO iteration of some
reactions presented in Table 1

Iterationb Reactiona

1 5 6 12

1 12 (0.030) 10 (0.030) 13 (0.030) 15 (0.030)
2 15 (0.011) 9 (0.042) 11 (0.042) 15 (0.042)
3 17 (0.015) 8 (0.060) 10 (0.060) 14 (0.060)
4 14 (0.021) 6 (0.085) 9 (0.085) 13 (0.085)
5 14 (0.030) 0 (0.120) 7 (0.120) 7 (0.120)
6 13 (0.042) 0 (0.120) 0 (0.170) 6 (0.170)
7 12 (0.060) 19 (0.008) 0 (0.170) 0 (0.240)
8 12 (0.085) 20 (0.006) 0 (0.006) 4 (0.031)
9 11 (0.120) 21 (0.006) 0 (0.006) 18 (0.008)
10 9 (0.170) 20 (0.006) 0 (0.006) 7 (0.011)
11 4 (0.170) 4 (0.008) 0 (0.006)
12 0 (0.170) 0 (0.012) 0 (0.006)
13 0 (0.034) 0 (0.012) 0 (0.006)
14 0 (0.034) 0 (0.006)
15 0 (0.006) 0 (0.006)
16 0 (0.006)
17 0 (0.006)
18 0 (0.006)

a Reaction numbering as in Table 1. The current trust radius in AÊ rad are given in parentheses
b Iteration RS-P-RFO
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quadratic function Q��Dq� [22]. With this important
result in mind one can apply the RS-RFO method to
®nd the minimum of the image quadratic function
Q��Dq�, since H� is positive de®nite, to locate a saddle
point. Taking the eigenpair corresponding to the lowest
eigenvalue, k�, of the RFO eigenvalue equation of the
image quadratic function, the vector displacement Dq is

Dq � Dq� � ÿ f �tv
h�tv ÿ k�a

wts ÿ
X
i�1

n

i6�tv

fi

hi ÿ k�a
wi

� ÿ ftv
htv � k�a

wts ÿ
X
i�1

n

i6�tv

fi

hi ÿ k�a
wi

� ÿ ftv
htv � m�

wts ÿ
X
i�1

n

i6�tv

fi

hi ÿ m�
wi �27�

where m� � k�a. Equation (27) as function of m� was
given by Helgaker [9a]. The same result is obtained if
we use the following transformation:

g� � Iÿ 2
X
i�1

n

i6�tv

wiw
T
i

0BB@
1CCAg �28�

to de®ne a new image quadratic function. Note that
using this transformation H� is now negative de®nite.
Applying again the RS-RFO method to ®nd the
maximum of this image quadratic function, the resulting
vector displacement Dq is

Dq � Dq� � ÿ ftv
htv ÿ k�a

wts ÿ
X
i�1

n

i6�tv

f �i
h�i ÿ k�a

wi

� ÿ ftv
htv ÿ k�a

wts ÿ
X
i�1

n

i6�tv

fi

hi � k�a
wi

� ÿ ftv
htv ÿ m�

wts ÿ
X
i�1

n

i6�tv

fi

hi � m�
wi �29�

In this case, k� corresponds to the highest eigenvalue of
the RFO eigenvalue equation. Since k� is the highest
eigenvalue, the m� parameter obeys the next inequality
(see Fig. 1), m� � k�a > maxfhtv; fh�i gn

i�1;i 6�tvg and the
domain of the parameter m� in Eq. (29) goes from �1 to
maxfhtv;ÿminfhign

i�1;i6�tvg. Equation (29) together with
this domain of the shift parameter m� constitute the basis
of the QA/TRIM and RQNR algorithms as de®ned by
Culot et al. [9b] and Bo®ll [9c]. Making the same
reasoning, we see that the domain of the shift parameter
m� in Eq. (27) goes from ÿ1 to minfh�tv; fhign

i�1;i 6�tvg
� minfÿhtv;minfhign

i�1;i6�tvg. These results show that the
QA/TRIM and RQNR algorithms [9] and the RS-RFO
method applied on an appropriate image quadratic
function of the quadratic model of the objective
function, hereafter called the RS-I-RFO method, are

the same. The di�erence between them is the way to
compute the shift parameter m. For the QA/TRIM and
RQNR algorithms [9], the shift parameter m is a
Lagrangian multiplier, while in the RS-I-RFO method
the parameter m comes from the product of an eigenval-
ue, k, associated with a generalized eigenvalue equation
with the corresponding metric, a, used in this eigenvalue
equation.

The RS-I-RFO algorithm is close to the algorithm
described in Sect. 3.1; however, we will comment on their
di�erences. First, in step 2 of Sect. 3.1.3 we have only one
eigenvalue equation rather than two. The AH matrix to
be diagonalized is built using the f � vector and the
H�Dmatrix, the diagonal matrix form of H�, rather than
the f vector and the HD matrix, respectively. In step 3 of
Sect. 3.1.3, one should take the eigenpair corresponding
to the lowest eigenvalue if the image quadratic function is
built according to Eq. (25), or the eigenpair corre-
sponding to the highest eigenvalue if the image quadratic
function is built using Eq. (28). With the selected eigen-
vector through Eq. (5) one gets directly the displacement
vector Dq. In step 4, of Sect. 3.1.3 the derivative that
appears in Eq. (20), d�DqTDq�=da, is evaluated using Eq.
(16). Finally, in Sect. 3.1.4, some care should be taken in
order to compute Q�Dq�, since Q��Dq� 6� Q�Dq�. This is
due to the fact that k�, the selected eigenvalue of the AH
matrix associated with the image quadratic function, is
di�erent from the corresponding eigenvalue k of the AH
matrix associated with the model quadratic function of
the objective function. If the image quadratic function is
de®ned through the Householder transformation
�Iÿ 2wtvw

T
tv� [see Eqs. (25) and (26)], the relation be-

tween both eigenvalues k and k� is

2k� �
1 DqT
ÿ � 0 �g��T

g� H�

 !
1

Dq

� �
1� aDqTDq

� 2gT Iÿ 2wtvw
T
tv

ÿ �
Dq� DqTH Iÿ 2wtvw

T
tv

ÿ �
Dq

1� aDqTDq

� 2kÿ 2
2ftvDqtv � htv�Dqtv�2

1� aDqTDq
�30�

where Eqs. (2) and (8d) applied to the image quadratic
function have been used together with Eqs. (25) and
(26). Rearranging Eq. (30), we get

k � k� � 2ftvDqtv � htv�Dqtv�2
1� aDqTDq

�31�

If the image quadratic function is de®ned using Eq. (28),
then the relation between both eigenvalues is

k � k� �
Pn

i�1;i6�tv�2fiDqi � hi�Dqi�2�
1� aDqTDq

�32�

Evaluating the correct eigenvalue k, either by Eq. (31) or
Eq. (32), one can estimate the change Q�Dq� of the
quadratic model of the objective function using Eq. (6).

At this point it is interesting to compare the perfor-
mance of both the RS-P-RFO and RS-I-RFO algo-
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rithms, since the only di�erence is the coupling term
between the max and min subspaces (see Table 1, col-
umns RS-P-RFO and RS-I-RFO). As in previous cases,
the optimization RS-I-RFO was carried out using the Z-
matrix coordinates. In general, the RS-I- RFO algorithm
presents much better performance than the RS-P-RFO
algorithm, which shows numerically that it is important
to take into account the couplings between the max and
min subspaces during the optimization process. Using
the RS-P-RFO algorithm, where the couplings are ne-
glected, the optimization of the transition states of the
Diels-Alder cycloaddition and the CH3O2H decompo-
sition did not converge within 100 iterations. However,
for reactions 1, 4, 11, 13, and 14 the RS-P-RFO algo-
rithm shows a slightly better convergence than the RS-I-
RFO method.

In Table 3 and without lost of generality, we show the
behavior of the RS-I-RFO, algorithm for the location
and optimization of the transition state for reaction 6
of Table 1. In this case the number of variables is 11.
First, we observe that the inequality m� � k�a <
minfÿhtv;minfhign

i�1;i 6�tvg is always satis®ed. Second, we
see that k� � k, where k is evaluated using Eq. (31) and,
consequently, using Eq. (6) we have the inequality
Q��Dq � Q�Dq�. This is due to the fact that Q��Dq� is the
variation energy associated with the quadratic function
with minimum character and Q�Dq� is the variation
energy associated with the quadratic function with sad-
dle point character. From iteration 6, the initial step
lengths, �DqTDq�1=2, are smaller than the trust radius R,
so no micro-iterative process is needed. Note that in this
case k� � m� since a � 1. Finally, in the last three itera-
tions, k� � m� � 0, which means that they are genuine
Newton-Raphson steps. Note that in this situation
r � 1:0.

5 Summary

We have presented a RFO method (RS-RFO) such that,
with the current selected eigenvector through the
transformation given by Eq. (5), the corresponding
displacement vector falls within the current trust region
without using any type of scaling. In this way the
displacement vector possesses the correct direction.
Following the idea of Banerjee et al. [2] to locate saddle
points, the partitioned form of the RS-RFO method
(RS-P-RFO) has been de®ned.

Finally, we have applied the RS-RFO method to the
optimization of the image quadratic function of the
quadratic model to locate saddle points [21]. This
method has been called RS-I-RFO. We have shown that
the RS-I-RFO algorithm and the QA/TRIM and
RQNR [9] algorithms are the same, so the QA/TRIM
and RQNR techniques to locate saddle points can be
de®ned as the [2/2] PadeÂ approximant of the corre-
sponding image quadratic function coupled with a
restricted step. We also have shown that in general to
optimize and locate saddle points, the RS-I-RFO
method is superior to the RS-P-RFO method.
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T
h
e
co
e�

ci
en
t
r
�

(E
k
+

1
)
E
k
)/
Q
(D
q
k
)
a
t
th
e
it
er
a
ti
o
n
k
g
iv
es

th
e
g
o
o
d
n
es
s
o
f
th
e
q
u
a
d
ra
ti
c
m
o
d
el

a
t
th
is
it
er
a
ti
o
n
;
se
e
te
x
t
fo
r
m
o
re

d
et
a
il
s

k
th
e
rm

s
g
ra
d
ie
n
t
n
o
rm

,
in

k
ca
l
m
o
l)
1
AÊ

)
1
/k
ca
l
m
o
l)
1
ra
d

)
1
,
w
h
er
e
n
is
th
e
n
u
m
b
er

o
f
v
a
ri
a
b
le
s.
In

th
is
ex
a
m
p
le
,
n
�

1
1
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